Functional Characterization of IPSC-Derived Brain Cells as a Model for X-Linked Adrenoleukodystrophy

نویسندگان

  • Mauhamad Baarine
  • Mushfiquddin Khan
  • Avtar Singh
  • Inderjit Singh
  • Zhi-Ying Wu
چکیده

X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast), neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA, a "hallmark" of X-ALD, was observed in both AMN OLs and cALD OLs with higher levels observed in cALD OLs than AMN OLs. The levels of ELOVL1 (ELOVL Fatty Acid Elongase 1) mRNA parallel the VLCFA load in AMN and cALD OLs. Furthermore, cALD Ast expressed higher levels of proinflammatory cytokines than AMN Ast and control Ast with or without stimulation with lipopolysaccharide. These results document that IPSC-derived Ast and OLs from cALD and AMN fibroblasts mimic the respective biochemical disease phenotypes and thus provide an ideal platform to investigate the mechanism of VLCFA load in cALD OLs and VLCFA-induced inflammatory disease mechanisms of cALD Ast and thus for testing of new therapeutics for AMN and cALD disease of X-ALD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turning skin into brain: using patient-derived cells to model X-linked adrenoleukodystrophy.

Until recently, investigators have been largely unable to explore the pathophysiology of neurological diseases by direct manipulation of live neural tissues derived from patients. With the advent of the induced pluripotent stem cell (iPSC) technique, however, patient-specific disease models have become a reality. The iPSC method involves the reprogramming of embryonic or adult somatic cells int...

متن کامل

Generation of Functional Neutrophils from a Mouse Model of X-Linked Chronic Granulomatous Disorder Using Induced Pluripotent Stem Cells

Murine models of human genetic disorders provide a valuable tool for investigating the scope for application of induced pluripotent stem cells (iPSC). Here we present a proof-of-concept study to demonstrate generation of iPSC from a mouse model of X-linked chronic granulomatous disease (X-CGD), and their successful differentiation into haematopoietic progenitors of the myeloid lineage. We furth...

متن کامل

Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: implications for X-linked adrenoleukodystrophy.

Defects of adrenoleukodystrophy protein (ALDP) lead to X-linked adrenoleukodystrophy (X-ALD), a disorder mainly affecting the nervous system white matter and the adrenal cortex. In the present study, we examine the expression of ALDP in various human tissues and cell lines by multiple-tissue RNA expression array analysis, Western blot analysis, and immunohistochemistry. ALDP-encoding mRNA is mo...

متن کامل

Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis

Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...

متن کامل

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015